\(M=5x^2-3x+1\)
\(=\left(\sqrt{5}x\right)^2-2\sqrt{5}x.\frac{3}{2\sqrt{5}}+\frac{9}{20}+\frac{11}{20}\)
\(=\left(\sqrt{5}x-\frac{3}{2\sqrt{5}}\right)^2+\frac{11}{20}\ge\frac{11}{20}\forall x\)
Vậy \(M_{min}=\frac{11}{20}\Leftrightarrow\sqrt{5}x-\frac{3}{2\sqrt{5}}=0\Leftrightarrow x=\frac{3}{10}\)