Phân thức đại số

H24

Tìm giá trị nhỏ nhất của biểu thức E=3x2+14y2+6x-8y-12xy+10

PA
1 tháng 5 2019 lúc 20:38

E=3x2+14y2+6x-8y-12xy+10

=4x2-x2+13y2+y2-6x-8y-12xy+9+1+36y2-36y2+16-16

=(4x2-6x+9) - (x2-12xy+36y2) + (y2-8y+16) +1+13y2+36y2-16

=(2x-3)2 - (x-6y)2 + (y-4)2 -15 +49y2 \(\ge-15\)

(vì \(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0\\\left(y-4\right)^2\ge0\\\left(x-6y\right)^2\ge0\\49y^2\ge0\end{matrix}\right.\left(với\forall x\right)\))

Để E =-15 thì :

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x-6y\right)^2=0\\49y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-4=0\\x-6y=0\\49y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=4\\x=6y\\y=0\end{matrix}\right.\)

Thay x=\(\frac{3}{2}\) vào x=6y ta được \(\frac{3}{2}=6y\)

\(\Leftrightarrow y=\frac{1}{4}\)

Thay y=0 vào x=6y ta được x =6*0

\(\Leftrightarrow\)x=0

Thay y=4 vào x=6y ta được : x =6*4

\(\Leftrightarrow x=24\)

Vậy Min của E= -15 với các cặp (x;y) tương ứng :(\(\frac{3}{2};\frac{1}{4}\)); (0;0) ; (24;4)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
BY
Xem chi tiết
CN
Xem chi tiết
HN
Xem chi tiết
ND
Xem chi tiết
BM
Xem chi tiết
LT
Xem chi tiết