A = 2x^2 - 8 x + 10 + (y-3)^4
A = (2x^2 - 8x + 8) + (y-3)^4 + 2
A = 2.(x^2 - 4x + 4) + (y-3)^4 + 2
A = 2.(x^2-2)^2 + (y-3)^4 + 2 >= 2.
Dấu "=" xảy ra <=> x^2 - 2 = 0 và y - 3 = 0
<=> x = \(\pm\sqrt{2}\)và y = 3.
Vậy Min A = 2 <=> x = \(\pm\sqrt{2}\)và y = 3