TP

Tìm giá trị nhỏ nhất của: \(A=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)

ML
11 tháng 11 2015 lúc 18:38

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2+9}+\sqrt{\left(x+1\right)^2+4}\ge\sqrt{\left(3-x\right)^2+3^2}+\sqrt{\left(x+1\right)^2+2^2}\)

\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(3+2\right)^2}\text{ }\left(Mincopxki\right)\)

\(=\sqrt{41}\)

Đẳng thức xảy ra khi \(y+1=0\text{ và }\frac{3-x}{x+1}=\frac{3}{2}\Leftrightarrow y=-1;\text{ }x=\frac{3}{5}.\)

Vậy GTNN của A là \(\sqrt{41}\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
NV
Xem chi tiết
HY
Xem chi tiết
PA
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết