\(A=\frac{x^2-2x+2016}{x^2}=\frac{2016x^2-2.2016.x+2016^2}{2016x^2}=\frac{2015x^2+\left(x-2016\right)^2}{2016x^2}\)
\(=\frac{2015}{2016}+\frac{\left(x-2016\right)^2}{2016x^2}\ge\frac{2015}{2016}\)
Dấu "=" xảy ra <=> x = 2016
Vậy \(A_{min}=\frac{2015}{2016}\) khi x=2016
A=(x^2-2x+2016)/x^2 (với x khác 0)
=(x^2/2016-2x+2016 + 2015x^2/2016 )/x^2
=(x^2/2016-2x+2016)/x^2 + (2015x^2)/(2016x^2)
=(x/can2016-can2016)^2/x^2 +2015/2016 >=2015/2016
=>min (A)=2015/2016 ,xay ra dau''='' khi x/can2016-can2016=0 <=>x=2016
can=căn
Mai giúp tui vs nhau