Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HK

Tìm giá trị nhỏ nhất của A=\(\frac{6x^3+5x^2-x+\frac{x^2+4x}{x+1}}{3x-2+\frac{3}{x+1}}\)

QT
3 tháng 4 2016 lúc 21:42

Sau khi rút gọn thì ta được \(A=x\left(2x+3\right)\)

                                  \(\Leftrightarrow A=2x^2+3x\)

                                  \(\Leftrightarrow A=2\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-2.\frac{9}{4}\)

                                  \(\Leftrightarrow A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x+\frac{3}{2}\right)^2\ge0\) nên \(2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Do đó \(A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(x+\frac{3}{2}=0\)

                       \(\Leftrightarrow\)\(x=\frac{-3}{2}\)

\(VậyMinA=\frac{-9}{2}tạix=\frac{-3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
TM
Xem chi tiết
AP
Xem chi tiết
NC
Xem chi tiết
VL
Xem chi tiết
LP
Xem chi tiết
HB
Xem chi tiết
PA
Xem chi tiết
KN
Xem chi tiết