Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số :
a) \(f\left(x\right)=2x^3-2x^2-12x+1\) trên đoạn \(\left[-2;\dfrac{5}{2}\right]\)
b) \(f\left(x\right)=x^2\ln x\) trên đoạn \(\left[1;e\right]\)
c) \(f\left(x\right)=xe^{-x}\) trên nửa đoạn [0; +\(\infty\))
d) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3}{2}\pi\right]\)
Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên khoảng, đoạn tương ứng :
a) \(g\left(x\right)=\left|x^3+3x^2-72x+90\right|\) trên đoạn \(\left[-5;5\right]\)
b) \(f\left(x\right)=x^2-4x^2+1\) trên đoạn \(\left[-1;2\right]\)
c) \(f\left(x\right)=x-\ln x+3\) trên khoảng \(\left(0;+\infty\right)\)
Tìm \(a\in\left(0;2\pi\right)\) để hàm số \(y=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(1+2\cos a\right)x^2+2x\cos a+1\) đồng biến trên khoảng \(\left(1;+\infty\right)\) ?
Với số a dương và khác 1, giả sử có ba hàm số :
\(s\left(x\right)=\dfrac{a^x-a^{-x}}{2}\)
\(c\left(x\right)=\dfrac{a^x+a^{-x}}{2}\)
\(t\left(x\right)=\dfrac{a^x-a^{-x}}{a^x+a^{-x}}\)
Hãy chứng minh rằng :
a) \(c^2\left(x\right)-s^2\left(x\right)=1\)
b) \(s\left(2x\right)=2s\left(x\right)c\left(x\right)\)
c) \(c\left(2x\right)=2c^2\left(x\right)-1=2s^2\left(x\right)+1=c^2\left(x\right)+s^2\left(x\right)\)
d) \(t\left(2x\right)=\dfrac{2t\left(x\right)}{1+t^2\left(x\right)}\)
Cho hàm số :
\(f\left(x\right)=ax^2-2\left(a+1\right)x+a+2\) \(\left(a\ne0\right)\)
a) Chứng tỏ rằng phương trình \(f\left(x\right)=0\) luôn có nghiệm thực. Tính các nghiệm đó ?
b) Tính tổng S và tích P của các nghiệm của phương trình \(f\left(x\right)=0\). Khảo sát sự biến thiên và vẽ đồ thị của S và P theo a ?
Tính :
a) \(\int\limits^2_{-1}\left(5x^2-x+e^{0,5x}\right)dx\)
b) \(\int\limits^2_{0,5}\left(2\sqrt{x}+\dfrac{3}{x^2}+\cos x\right)dx\)
c) \(\int\limits^2_1\dfrac{dx}{\sqrt{2x+3}}\) (đặt \(t=\sqrt{2x+3}\) )
d) \(\int\limits^2_1\sqrt[3]{3x^3+4}x^2dx\) (đặt \(t=\sqrt[3]{3x^3+4}\) )
e) \(\int\limits^2_{-2}\left(x-2\right)\left|x\right|dx\)
g) \(\int\limits^0_1x\cos xdx\)
h) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{1+\sin2x+\cos2x}{\sin x+\cos x}dx\)
i) \(\int\limits^{\dfrac{\pi}{2}}_0e^x\sin xdx\)
k) \(\int\limits^e_1x^2\ln^2xdx\)
Cho hàm số \(y=x^3+ax^2+bx+1\)
a) Tìm a và b để đồ thị của hàm số đi qua hai điểm \(A\left(1;2\right);B\left(-2;-1\right)\)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giớ hạn bởi các đường \(y=0;x=0;x=1\) và đồ thị (C) xung quanh trục hoành
Giải các phương trình sau :
a) \(5^{\cos\left(3x+\dfrac{\pi}{6}\right)}=1\)
b) \(6.4^x-13.6^x+6.9^x=0\)
c) \(7^{x^2}.5^{2x}=7\)
d) \(\log_4\left(x+2\right)\log_x2=1\)
e) \(\dfrac{\log_3x}{\log_93x}=\dfrac{\log_{27}9x}{\log_{81}27x}\)
g) \(\log_3x+\log_4\left(2x-2\right)=2\)
Tìm các điểm cực trị của các hàm số sau :
a) \(y=-x^3-6x^2+15x+1\)
b) \(y=x^2\sqrt{x^2+2}\)
c) \(y=x+\ln\left(x+1\right)\)
d) \(y=x-1+\dfrac{1}{x+1}\)