Tìm các đường tiệm cận của đồ thị các hàm số sau :
a) \(y=\dfrac{5x+3}{-x+2}\)
b) \(y=\dfrac{-6x+2}{x-1}\)
c) \(y=\dfrac{2x^2+8x-9}{3x^2+x-4}\)
d) \(y=\dfrac{x+2}{-2x+5}\)
Cho hàm số :
\(y=\dfrac{1}{3}x^3-\left(m-1\right)x^2+\left(m-3\right)x+4\dfrac{1}{2}\) (1)
(m là tham số )
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm (1) khi m = 0
b) Viết phương trình của tiếp tuyến với đồ thị C( tại điểm \(A\left(0;4\dfrac{1}{2}\right)\)
c) Tình diện tích hình phẳng giới hạn bởi (C), trục hoành và các đường thẳng \(x=0;x=2\)
d) Xác định m để đồ thị (1) cắt đường thẳng \(y=-3x+4\dfrac{1}{2}\) tại 3 điểm phân biệt
Cho a, b, x là những số dương. Đơn giản các biểu thức sau :
a) \(A=\left[\dfrac{2a+\left(ab\right)^{\dfrac{1}{2}}}{3a}\right]^{-1}\left[\dfrac{a^{\dfrac{3}{2}}-b^{\dfrac{3}{2}}}{a-\left(ab\right)^{\dfrac{1}{2}}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\right]\)
b) \(B=\left(\dfrac{\sqrt{a}-\sqrt{x}}{\sqrt{a+x}}-\dfrac{\sqrt{a+x}}{\sqrt{a}+\sqrt{x}}\right)^{-2}-\left(\dfrac{\sqrt{a}-\sqrt{x}}{\sqrt{a+x}}-\dfrac{\sqrt{a+x}}{\sqrt{a}-\sqrt{x}}\right)^{-2}\)
c) \(C=\sqrt{16^{\dfrac{1}{\log_74}}+81^{\dfrac{1}{\log_69}}+15}\)
d) \(D=49^{1-\log_72}+5^{-\log_54}\)
Tính diện tích của hình phẳng giới hạn bởi các đường sau :
a) \(y=\left|x^2-1\right|\) và \(y=5+\left|x\right|\)
b) \(2y=x^2+x-6\) và \(2y=-x^2+3x+6\)
c) \(y=\dfrac{1}{x}+1;x=1\) và tiếp tuyến với đường \(y=\dfrac{1}{x}+1\) tại điểm \(\left(2;\dfrac{3}{2}\right)\)
Cho hàm số :
\(y=-\dfrac{1}{3}x^3+\left(a-1\right)x^2+\left(a+3\right)x-4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi a = 0
b) Tính diện tích hình phẳng giới hạn bởi (C) và các đường thẳng \(y=0;x=-1;x=1\)
Cho hàm số :
\(y=2-\dfrac{2}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Từ (C) vẽ đồ thị của hàm số
\(y=\left|\dfrac{2\left(x-3\right)}{x-2}\right|\) (1)
Dựa vào đồ thị (1), hãy biện luận theo k số nghiệm của phương trình
\(\left|\dfrac{2\left(x-3\right)}{x-2}\right|=\log_2k\) (2)
c) Tìm các điểm thuộc (C) có tọa độ nguyên ?
Cho hàm số \(y=x^3+ax^2+bx+1\)
a) Tìm a và b để đồ thị của hàm số đi qua hai điểm \(A\left(1;2\right);B\left(-2;-1\right)\)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giớ hạn bởi các đường \(y=0;x=0;x=1\) và đồ thị (C) xung quanh trục hoành
Tính thể tích của vật thể tròn xoay khi các hình phẳng giới hạn bởi các đường sau quanh trục Ox :
a) \(y=x^3;y=1;x=3\)
b) \(y=\dfrac{2}{\pi}x;y=\sin x;x\in\left[0;\dfrac{\pi}{2}\right]\)
c) \(y=x^{\alpha};\alpha\in\mathbb{N}^{\circledast};y=0;x=0;x=1\)
Tính thể tích của vật thể tròn xoay khi các hình phẳng giới hạn bởi các đường sau quanh trục Ox :
a) \(y=x^3;y=1;x=3\)
b) \(y=\dfrac{2}{\pi}x;y=\sin x;x\in\left[0;\dfrac{\pi}{2}\right]\)
c) \(y=x^{\alpha};\alpha\in\mathbb{N}^{\circledast};y=0;x=0;x=1\)