PN

Tìm giá trị lớn nhất và giá trị nhỏ nhất của A=\(\frac{x^2}{x^2-5x+7}\)

HT
7 tháng 6 2017 lúc 12:32

vì \(x^2-5x+7=x^2-\frac{2.5}{2}x+\frac{25}{4}+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)nên phương trình xác định với mọi \(x\)

TXD :\(D=R\)Ta có :

\(A\left(x^2-5x+7\right)=x^2\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

Nếu \(A=1\Rightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)tức biểu thức nhận được giá trị là \(1\)Nếu \(A\ne1\)Thì phương trình có nghiệm khi : \(\Delta\ge0\Leftrightarrow25A^2-4\left(A-1\right)7A\ge0\Rightarrow A\left(28-3A\right)\ge0\Leftrightarrow0\le A\le\frac{28}{3}\)Vậy nên \(0\le A\le\frac{28}{3}\)            \(A_{Min}=0\Leftrightarrow\frac{x^2}{x^2-5x+7}=0\Leftrightarrow x=0\)            \(A_{Max}=\frac{28}{3}\Leftrightarrow\frac{x^2}{x^2-5x+7}=\frac{28}{3}\Leftrightarrow x=\frac{-5A}{2\left(A-1\right)}\Leftrightarrow x=\frac{14}{5}\)
Bình luận (0)
CB
7 tháng 6 2017 lúc 12:22

Sorry em ko bt làm  em mới học lớp 5 thui

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
DT
Xem chi tiết
DD
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
QT
Xem chi tiết
HM
Xem chi tiết