\(P=x^2+\frac{3}{4}\)
Vì \(x^2\ge0=>x^2+\frac{3}{4}\ge\frac{3}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x^2=0< =>x=0\)
Vậy minP=3/4 khi x=0
\(Q=-x^2+\frac{3}{4}=\frac{3}{4}-x^2\)
Vì \(x^2\ge0=>-x^2\le0=>\frac{3}{4}-x^2\le\frac{3}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x^2=0< =>x=0\)
Vậy MaxQ=3/4 khi x=0
\(x.\left(y+1\right)=2=2.1=1.2=\left(-1\right).\left(-2\right)=\left(-2\right).\left(-1\right)\)
Tới đây bn lập bảng ước nguyên ra ,tìm x,y rất dễ
\(\left(x-1\right).\left(y+2\right)=3=3.1=1.3=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Cũng tương tự câu trên
Đúng 0
Bình luận (0)