Đặt \(P=\dfrac{x}{\left(x+2\right)^2}\) ; \(\left(x\ne-2\right)\)
\(P=\dfrac{x}{x^2+4x+4}\)
\(P=\dfrac{1}{x+4+\dfrac{4}{x}}\)
Áp dụng BĐT AM-GM, ta có:
\(x+\dfrac{4}{x}\ge2\sqrt{x.\dfrac{4}{x}}\)
\(\Leftrightarrow x+\dfrac{4}{x}\ge2.2=4\)
\(\Rightarrow P\le\dfrac{1}{4+4}\)
\(\Rightarrow P\le\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(x=\dfrac{4}{x}\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)
Vậy \(Max_P=\dfrac{1}{8}\) khi \(x=2\)