\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}...\right)\)
nhận xét tương tự thì :B <=1/4
vậy B max = 1/4
<=>x=1/2
Ta có:
\(x-{x}^{2}=[{-(\frac{1}{2})}^{2}+2\frac{1}{2}x-x^2]+\frac{1}{4}\)
\(=-[{(\frac{1}{2})}^{2}-2\frac{1}{2}x+x^2]+\frac{1}{4}\)
\(=-(\frac{1}{2}-x)^2+\frac{1}{4}\) \(=\frac{1}{4}-(\frac{1}{2}-x)^2\)
ta có:\((\frac{1}{2}-x)^2\geq0 \Rightarrow -(\frac{1}{2}-x)^2\leq0\)
\(\Rightarrow \frac{1}{4}-(\frac{1}{2}-x)^2\leq\frac{1}{4}\) Dấu "=" xảy ra khi \(\frac{1}{2}-x=0 \leftrightarrow x=\frac{1}{2} \)
Vậy GTLN của biểu thức=\(\frac{1}{4}\) \(\leftrightarrow x=\frac{1}{2} \)