\(A=-x+\sqrt{x}=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
\(A=-x+\sqrt{x}=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Cho biểu thức \(M=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}-1\)
Tìm giá trị của x để M đạt giá trị lớn nhất
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\), biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\) biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\), biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)