Khi \(x=\dfrac{1}{4}\Leftrightarrow P=\dfrac{4.\dfrac{1}{4}-1}{\left(\dfrac{1}{4}\right)^2+3}=0\)
Khi \(x\ne\dfrac{1}{4}\Leftrightarrow P\ne\dfrac{4.\dfrac{1}{4}-1}{\left(\dfrac{1}{4}\right)^2+3}\Leftrightarrow P\ne0\)
\(P=\dfrac{4x-1}{x^2+3}\Leftrightarrow Px^2-4x+3P+1=0\) là pt bậc 2 do \(P\ne0\)
\(\Delta'=\left(-2\right)^2-P\left(3P+1\right)=-3P^2-P+4\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow-3P^2-P+4\ge0\Leftrightarrow-3\left(P+\dfrac{1}{6}\right)^2+\dfrac{49}{12}\ge0\Leftrightarrow P\le1\)
\(maxP=1\Leftrightarrow\dfrac{4x-1}{x^2+3}=1\Leftrightarrow x^2-4x+4=0\Leftrightarrow x=2\left(tm\right)\)
\(P=\dfrac{4x-1}{x^2+3}\)
\(\Leftrightarrow x^2P+3P-4x+1=0\)
\(\Leftrightarrow Px^2-4x+3P+1=0\left(1\right)\)
\(\left(1\right)\) có nghiệm khi:
\(\Delta'=4-P\left(3P+1\right)=-3P^2-P+4\ge0\)
\(\Leftrightarrow P\in\left[-\dfrac{4}{3};1\right]\)
\(\Rightarrow P_{max}=1\Leftrightarrow x=2\)