Ta có : \(N=2x-2x^2-5\)
\(=-\left(2x^2-2x+5\right)\)
\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}.x.\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{2}}{2}\right)^2+5\right]\)
\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}+5\right]\)
\(=-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\)
Vì \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2\ge0\)với mọi x
nên \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)với mọi x
\(\Rightarrow-\left[\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2+\frac{9}{2}\right]\le-\frac{9}{2}\)với mọi x
Dấu "=" xảy ra khi \(\left(\sqrt{2}x-\frac{\sqrt{2}}{2}\right)^2=0\)
\(\Rightarrow\sqrt{2}x-\frac{\sqrt{2}}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy GTLN của biểu thức trên là \(\frac{-9}{2}\)khi x=\(\frac{1}{2}\)
!!Chúc học tốt!!!