Vì 1-x-2x^2>=0>>>2x^2-x-1<=0>>>-1<=x<=1/2
F(x)=1/2(x+2√(1-2x)(x+1)<=1/2(x+1-2x+x+1)(BĐT Cô-si)
<=1/2.2=1.
Dấu= xảy ra khi 1-2x=x+1 khi x=0(TM)
Vì 1-x-2x^2>=0>>>2x^2-x-1<=0>>>-1<=x<=1/2
F(x)=1/2(x+2√(1-2x)(x+1)<=1/2(x+1-2x+x+1)(BĐT Cô-si)
<=1/2.2=1.
Dấu= xảy ra khi 1-2x=x+1 khi x=0(TM)
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
cho \(x\ge-\frac{3}{2}\). Tìm giá trị lớn nhất của biểu thức: \(M=\sqrt{\left(2x+3\right)\left(x+4\right)}+2\sqrt{x+5}-2x\)
Cho biểu thức: M = 1 - \(\left[\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right].\left[\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
a. Tìm giá trị của x để M có nghĩa, rút gọn M
b. Tìm giá trị nhỏ nhất của biểu thức \(\left(2000-M\right)\)khi x\(\ge4\)
Tìm các số nguyên z để giá trị của \(M\in N\)
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
1) TÌm giá trị lớn nhất và nhỏ nhất của biểu thức P =\(\sqrt{x-1}+\sqrt{3-x}\)
2) Giải phương trình \(x^2+9x+21=\sqrt{2x+9}\)
3) Cho x ,y thay đổi thỏa mãn\(0< x< 1;0< y< 1\)
Tìm giá trị lớn nhất của biểu thức P =\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
4) Cho các số dương a,b,c,d thỏa mãn \(ab+bc+ca=1\)
Chứng minh rằng: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
A=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}-2}{x+2\sqrt{x}+1}\right)\frac{\left(1-x\right)^2}{2}\)
a. Rút gọn biểu thức A
b. Tìm giá trị lớn nhất
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
Cho biểu thức; G=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) Tìm gái trị lớn nhất của G
c) tìm x để G nhận giái trị âm