Chương IV : Biểu thức đại số

CV

Tìm giá trị lớn nhất của biểu thức A = \(\dfrac{x+1}{\left|x\right|}\) ( với x thuộc Z và x \(\ne\) 0 )

H24
8 tháng 4 2018 lúc 10:01

A đạt giá trị lớn nhất khi |x| nhỏ nhất

Vì |x| luôn là số dương nên ta bỏ dấu giá trị tuyệt đối. Ta được:

\(A=\dfrac{x+1}{x}=\dfrac{x}{x}+\dfrac{1}{x}=1+\dfrac{1}{x}\ge2\) (Vì \(1+\dfrac{1}{x}\) luôn lớn hơn 1. Nên suy ra \(1+\dfrac{1}{x}\ge2\) )

\(\Rightarrow\dfrac{1}{x}=2-1=1\Rightarrow x=1\) (*)

Thế (*) vào biểu thức A, ta có:

\(A_{max}=\dfrac{x+1}{\left|x\right|}=\dfrac{1+1}{\left|1\right|}=\dfrac{2}{\left|1\right|}=2\)

Vậy giá trị lớn nhất của biểu thức A = 2 khi x = 1 (*)

Bình luận (0)
CV
7 tháng 4 2018 lúc 19:27

Nhã Doanh, Phạm Nguyễn Tất Đạt, Akai Haruma, nguyen thi vang, Nguyễn Thị Ngọc Thơ, kuroba kaito, Mashiro Shiina, Nguyễn Phạm Thanh Nga, lê thị hương giang, Aki Tsuki, Mến Vũ, tth, Kien Nguyen, Neet, Nguyễn Huy Tú, Ace Legona, soyeon_Tiểubàng giải, Nguyễn Thanh Hằng, Phương An, Võ Đông Anh Tuấn, Trần Việt Linh, Hoàng Lê Bảo Ngọc,...

Bình luận (1)

Các câu hỏi tương tự
TV
Xem chi tiết
MN
Xem chi tiết
NX
Xem chi tiết
PY
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
AT
Xem chi tiết
NH
Xem chi tiết