VL

Tìm giá trị của x và y để :

S=|x+2|+|2.y-10|+2012 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó 

LM
21 tháng 4 2018 lúc 18:47

Do |x+2| > hoặc =0

    |2y-10| > hoặc =0

=>|x+2|+|2y-10| > hoặc =0

=>___________+2012 > hoặc=0+2012=2012

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)=>\(\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}=>\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right):2=5\end{cases}}\)

Vậy x=-2;y=5 <=> S=2012

Bình luận (0)
H24
23 tháng 5 2019 lúc 10:00

                                                                \(\text{Bài giải}\)

                       \(\text{Ta có : }S=\left|x+2\right|+\left|2y-10\right|+2012\)

\(\text{Do }\left|x+2\right|\ge0\)

       \(\left|2y-10\right|\ge0\)

\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|\ge0\)

\(\Rightarrow\text{ }\left|x+2\right|+\left|2y-10\right|+2012\ge0+2012=2012\)

\(\text{Dấu "}=\text{" xảy ra khi :}\)

\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}}\)                          \(\Rightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)                           \(\Rightarrow\hept{\begin{cases}x=0-2=-2\\y=\left(0+10\right)\text{ : }2=5\end{cases}}\)

              \(\text{Thay }x=-2\text{ , }y=5\text{ ta có : }\)

\(S=\left|-2+2\right|+\left|2\cdot5-10\right|+2012\)

\(S=0+\left|10-10\right|+2012\)

\(S=0+0+2012\)

\(S=2012\)

\(\text{Vậy }GTNN\text{ của }S=2012\text{ khi }x=-2\text{ và }y=5\)

Bình luận (0)
DL
23 tháng 5 2019 lúc 14:42

Ta có: \(S=\left|x+2\right|+\left|2y-10\right|+2012\)

    \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow}\left|x+2\right|+\left|2y-10\right|\ge0\)

\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2012\ge2012\Leftrightarrow S\ge2012\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=5\end{cases}}.\)

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
AD
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
HS
Xem chi tiết
VC
Xem chi tiết