Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

KP

Tìm giá trị của x để

D=\(\frac{x^2-2x+2014}{x^2}\), x khác 0 đạt GTNN

 

TP
29 tháng 3 2019 lúc 21:52

\(D=\frac{x^2-2x+2014}{x^2}\)

\(D=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2014}{x^2}\)

\(D=1-\frac{2}{x}+\frac{2014}{x^2}\)

\(D=2014\cdot\frac{1}{x^2}-2\cdot\frac{1}{x}+1\)

Đặt \(\frac{1}{x}=a\)

\(D=2014a^2-2a+1\)

\(D=2014\left(a^2-a\cdot\frac{1}{1007}+\frac{1}{2014}\right)\)

\(D=2014\left(a^2-2\cdot a\cdot\frac{1}{2014}+\frac{1}{2014^2}+\frac{2013}{2014^2}\right)\)

\(D=2014\left[\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014^2}\right]\)

\(D=2014\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2014}\Leftrightarrow\frac{1}{x}=\frac{1}{2014}\Leftrightarrow x=2014\)

Vậy....

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
LG
Xem chi tiết
VT
Xem chi tiết
NB
Xem chi tiết
TA
Xem chi tiết
DK
Xem chi tiết
PN
Xem chi tiết
MN
Xem chi tiết
HP
Xem chi tiết