YT

tìm giá trị của tham số M để đa thức P=x^4+x^3+5x^2+8x+2-m chia hết cho đa thức Q = x^2-x+5

NT
7 tháng 12 2020 lúc 19:21

x^4 + x^3 + 5x^2 + 8x + 2 - m x^2 - x + 5 x^2 + 2x + 2 x^4 - x^3 + 5x^2 2x^3 + 8x 2x^3 - 2x^2 + 10x 2x^2 - 2x + 2 2x^2 - 2x + 10 -8 - m

Để \(P⋮Q\)<=> -8 - m = 0

<=> m = -8

Bình luận (0)
 Khách vãng lai đã xóa
LD
7 tháng 12 2020 lúc 19:22

Bài làm

P = x4 + x3 + 5x2 + 8x + 2 - m

Q = x2 - x + 5 

Gọi H là thương trong phép chia P cho Q

Ta có : P bậc 4 , Q bậc 2 => H bậc 2

=> H có dạng x2 + ax + b

Khi đó : P chia hết cho Q <=> P = Q.H

<=> x4 + x3 + 5x2 + 8x + 2 - m = ( x2 - x + 5 )( x2 + ax + b )

<=> x4 + x3 + 5x2 + 8x + 2 - m = x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax + 5b

<=> x4 + x3 + 5x2 + 8x + 2 - m = x4 + ( a - 1 )x3 + ( b - a + 5 )x2 + ( 5a - b )x + 5b

Đồng nhất hệ số ta có :

\(\hept{\begin{cases}a-1=1\\b-a+5=5\\5a-b=8\end{cases}};5b=2-m\)

=> \(\hept{\begin{cases}a=b=2\\m=-8\end{cases}}\)

Vậy m = -8

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HD
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
PP
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
3N
Xem chi tiết
NH
Xem chi tiết
DM
Xem chi tiết