TXĐ: D = R ∖ 2 m
y ' = - x 2 + 4 m x - m 2 x - 2 m 2 = f x x - 2 m 2
Đặt t = x - 1. Khi đó bất phương trình f x ≤ 0 trở thành g t = - t 2 - 2 1 + 2 m t - m 2 + 4 m - 1 ≤ 0
Hàm số nghịch biến trên 1 ; + ∞ khi và chỉ khi
y ' ≤ 0 , ∀ x ∈ 1 ; + ∞ ⇔ 2 m < 1 g t ≤ 0 , ∀ t > 0 * * ⇔ ∆ ' = 0 ∆ ' = 0 S < 0 P ≥ 0 ⇔ m = 0 m ≠ 0 4 m - 2 < 0 m 2 - 4 m + 1 ≥ 0 ⇔ m ≤ 2 - 3
Vậy m ≤ 2 - 3
Đáp án C