SD

TÌm giá trị biểu thức \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)

TL
1 tháng 10 2020 lúc 19:06

\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LH
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
PN
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
OT
Xem chi tiết
DV
Xem chi tiết
BT
Xem chi tiết