Ôn tập cuối năm môn Đại số

TP

Tìm \(f:N\rightarrow R\) thỏa mãn \(f\left(n+1\right)=af^2\left(n\right)+bf\left(n\right)+c\) với \(a\ne0;c=\dfrac{b^2-2b}{4a}\)

NL
31 tháng 3 2021 lúc 5:11

Đặt \(f\left(1\right)=d\)

\(f\left(n+1\right)=af^2\left(n\right)+bf\left(n\right)+\dfrac{b^2}{4a}-\dfrac{b}{2a}\)

\(\Leftrightarrow f\left(n+1\right)+\dfrac{b}{2a}=a\left[f\left(n\right)+\dfrac{b}{2a}\right]^2\)

Đặt \(f\left(n\right)+\dfrac{b}{2a}=g\left(n\right)\Rightarrow\left\{{}\begin{matrix}g\left(1\right)=d+\dfrac{b}{2a}\\g\left(n+1\right)=a.g^2\left(n\right)\end{matrix}\right.\)

\(\Rightarrow g\left(n\right)=a.g^2\left(n-1\right)=a\left[a.g^2\left(n-2\right)\right]^2=a^{2^2-1}.g^{2^2}\left(n-2\right)=...=a^{2^{n-1}-1}.\left[g\left(1\right)\right]^{2^{n-1}}\)

\(\Rightarrow g\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}\)

\(\Rightarrow f\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}-\dfrac{b}{2a}\) (1)

Sau đó kiểm tra lại công thức (1) bằng quy nạp là được

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QP
Xem chi tiết
H24
Xem chi tiết