NM

tìm dư trong phép chia đa thức f(x)=(x+1)(x+3)(x+5)(x+7)+2002 cho đa thức g(x)=x2+8x+12

NL
27 tháng 6 2017 lúc 17:11

Ta có:

\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)

Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.

Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.

Ta có

\(h\left(-2\right)=f\left(-2\right)\)

\(\Leftrightarrow-2a+b=1987\)(1)

\(h\left(-6\right)=f\left(-6\right)\)

\(\Leftrightarrow-6a+b=1987\)(2)

Từ (!)(2) suy ra:

\(-2a+b=-6a+b=1987\)

\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)

Vậy số dư khi chia fx ccho gx là 1987

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
TQ
Xem chi tiết
AA
Xem chi tiết
SH
Xem chi tiết
RV
Xem chi tiết
SH
Xem chi tiết
NC
Xem chi tiết