ND

Tìm dư của phép chia

\(x^{19}+x^5-x^{1995}\) : \(x^2-1\)

HT
20 tháng 7 2018 lúc 19:42

\(A\left(x\right)=x^{19}+x^5+x^{1996}.\)

\(Q\left(x\right)=x^2-1\)

Phép chia có dư 

=> \(A\left(x\right)=Q\left(x\right)+r\)

\(x^{19}+x^5-x^{1995}=x^2-1+r\)

Với x=1 => \(1+1-1=1-1+r\)\(\Rightarrow r=1\)

Với x=-1 => \(-1+-1-\left(-1\right)=1-1+r\Rightarrow r=-1\)

Vậy số dư của phép chia đó là 1,-1

đây là định bí Bơ Du nha bạn

Bình luận (0)
KT
20 tháng 7 2018 lúc 19:43

Gọi thương của phép chia  \(x^{19}+x^5-x^{1995}\) cho   \(x^2-1\)là  \(A\left(x\right)\)và số dư là  \(ax+b\)  (do đa thức chia bậc 2)

Ta có:    \(f\left(x\right)=x^{19}+x^5-x^{1995}=\left(x^2-1\right)A\left(x\right)+ax+b\)

                                                                  \(=\left(x-1\right)\left(x+1\right)A\left(x\right)+ax+b\)

Do đa thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=1\)ta được:

\(\hept{\begin{cases}a+b=1\\-a+b=-1\end{cases}}\)  \(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)

Vậy đa thức dư là  \(x\)

            

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
SH
Xem chi tiết
LN
Xem chi tiết
NU
Xem chi tiết
NN
Xem chi tiết
TV
Xem chi tiết
NK
Xem chi tiết