a) \(3x^2-2x=0\)
Phương trình này xác định với mọi x
b)\(\frac{1}{x-1}=3\)
pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)
d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)
e) \(2x=\frac{1}{x^2-2x+1}\)
pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)
\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)
\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)