FK

Tìm điều kiện xác định của a để các căn sau có nghĩa:

1.

\(\sqrt{\dfrac{-a}{3}}\)

2.  \(\sqrt{\dfrac{a^2+1}{1-3a}}\)

3.  \(\sqrt{a^2-6a+10}\)

4.   \(\sqrt{\dfrac{a-1}{a+2}}\)

Làm ơn giúp mình với. Cảm ơn mọi người nhiều❤

LH
8 tháng 6 2021 lúc 10:38

1)Để căn có nghĩa \(\Leftrightarrow\dfrac{-a}{3}\ge0\Leftrightarrow a\le0\)

Vậy...

2)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2+1}{1-3a}\ge0\\1-3a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1-3a>0\left(vìa^2+1>0\right)\\1-3a\ne0\end{matrix}\right.\)

\(\Leftrightarrow1-3a>0\Leftrightarrow3a< 1\Leftrightarrow a< \dfrac{1}{3}\)

Vậy...

3)Để căn có nghĩa 

\(\Leftrightarrow a^2-6a+10\ge0\Leftrightarrow\left(a^2-6a+9\right)+1\ge0\Leftrightarrow\left(a-3\right)^2+1\ge0\left(lđ;\forall a\right)\)

Vậy căn luôn có nghĩa với mọi a

4)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a-1}{a+2}\ge0\\a+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+2< 0\end{matrix}\right.\end{matrix}\right.\\a+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge1\\a>-2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le1\\a< -2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -2\end{matrix}\right.\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
CC
Xem chi tiết
YT
Xem chi tiết
HA
Xem chi tiết
TV
Xem chi tiết
LT
Xem chi tiết
YT
Xem chi tiết
DT
Xem chi tiết
6C
Xem chi tiết
MH
Xem chi tiết