TL

Tìm đa thức P(x) thỏa mãn : P(x)chia cho x+3 dư 1; chia cho x-4 dư 8; chia cho(x+3)(x-4) được thương là 3x và còn dư 

LC
2 tháng 9 2020 lúc 0:54

Vì \(P\left(x\right)\)chia cho x+3 du 1 nên

\(P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow P\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1=1\left(1\right)\)

Vì P(x) chia cho x-4 dư 8 nên 

\(P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=8\left(2\right)\)

Vì P(x) chia cho (x+3)(x-4) được thương là 3x và còn dư 

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1), (2)và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=4\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được: \(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
SH
Xem chi tiết
NN
Xem chi tiết
CA
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết