chứng minh \(S_n-2=\left(\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right)^2\) .Tìm tất cả các số n để \(S_n-2\)là số chính phương
Với số tự nhiên n , \(n\ge3\)
Đặt \(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
Chứng minh rằng \(S_n< \frac{1}{2}\)
Cho \(S_n=\frac{1}{n^2\left(n+2\right)\sqrt{n+1}}\)Chứng minh rằng: \(S_1+S_2+...+S_n< \frac{1}{2\sqrt{2}}\)
Với mỗi số nguyên dương \(n\le2008\)
Đặt \(S_n=a^n+b^n\) với \(a=\frac{3+\sqrt{5}}{2}\) và \(b=\frac{3-\sqrt{5}}{2}\)
CMR với \(n\ge1\) ta có \(S_n-2=\left[\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right]^2\)
Cho \(S_n=\sqrt{1+\left(\frac{n+1}{n}\right)^2}+\sqrt{\frac{1}{n^2}-2\left(\frac{1}{n}-1\right)}\)Tính: \(\frac{1}{S_1}+\frac{1}{S_2}+...+\frac{1}{S_{2018}}\)
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
Tìm số tự nhiên \(n\) nhỏ nhất để \(\left(1+1\right)\left(2+2^2\right)\left(3+3^2\right)\left(4+4^2\right)...\left(n+n^2\right)>7620042014\).
Cho biểu thức: \(S_n=\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^n\)
(với n nguyên dương)
a. Tính \(S_{2;}S_3\)(cái này mình tính được)
b.Chứng minh rằng: Với mọi m,n nguyên dương và m>n, ta có: \(S_{m+n}=S_m\cdot S_n-S_{m-n}\)
c. Tính \(S_4\)
Cho biểu thức:
\(S_n=\left(\sqrt{3}+\sqrt{2}\right)^n+\left(\sqrt{3}-\sqrt{2}\right)^n\)
với n nguyên dương.
cm: \(S_{2n}=S^{2_n}-2\)