a; \(234^{5^{6^7}}\) Ta có 5 \(\equiv\) 1 (mod 4) ⇒ 5\(^{6^7}\) \(\equiv\) 1 (mod 4)
Đặt \(5^{6^7}\) = 4k + 1
Ta có: \(234^{5^{6^7}}\) = 2344k+1 = (2344)k.234 = \(\overline{..6^{ }}\)k.234 = \(\overline{..4}\)
b; \(579^{6^{7^5}}\)
6 ⋮ 2 ⇒ \(6^{7^5}\)⋮ 2 ⇒ \(6^{7^5}\) = 2k
\(579^{6^{7^5}}\) = \(579^{2k}\) = \(\left(579^2\right)^k\) = \(\overline{..1}\)k = \(\overline{..1}\)