LT

tìm cặp số nguyên 2x^2-xy+9x-3y+4=0

TH
4 tháng 4 2022 lúc 21:28

\(2x^2-xy+9x-3y+4=0\)

\(\Rightarrow-y\left(x+3\right)+x\left(2x+9\right)=-4\)

\(\Rightarrow-y\left(x+3\right)=-4-x\left(2x+9\right)\)

\(\Rightarrow y=\dfrac{x\left(2x+9\right)+4}{x+3}=\dfrac{2x^2+9x+4}{x+3}\)

-Vì x,y nguyên nên: 

\(\left(2x^2+9x+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(2x^2+6x+3x+9-5\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[2x\left(x+3\right)+3\left(x+3\right)-5\right]⋮\left(x+3\right)\)

\(\Rightarrow5⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow x\in\left\{-2;2;-4;-8\right\}\)

*\(x=-2\Rightarrow y=\dfrac{2.\left(-2\right)^2+9.\left(-2\right)+4}{-2+3}=-6\) 

\(x=2\Rightarrow y=\dfrac{2.2^2+9.2+4}{2+3}=6\)

\(x=-4\Rightarrow y=\dfrac{2.\left(-4\right)^2+9.\left(-4\right)+4}{-4+3}=0\)

\(x=-8\Rightarrow y=\dfrac{2.\left(-8\right)^2+9.\left(-8\right)+4}{-8+3}=-12\)

-Vậy các cặp số \(\left(x,y\right)\) là \(\left(-2,-6\right);\left(2,6\right);\left(-4,0\right);\left(-8;-12\right)\)

Bình luận (0)