Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)
Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)
=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)
=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).