DH

Tìm các số tự nhiên x;n sao cho số \(p=x^4+2^{4n+2}\) là một số nguyên tố

CH
22 tháng 12 2017 lúc 12:14

Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)

\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)

\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)

Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)

Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)

Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)

\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)

Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\) 

Bình luận (0)
NC
5 tháng 11 2018 lúc 16:40

woww hay quá !

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
RZ
Xem chi tiết
MA
Xem chi tiết
NN
Xem chi tiết
HD
Xem chi tiết
PH
Xem chi tiết