Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho 2 số tự nhiên m,n thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\) là số nguyên.CMR UCLN(m,n) không lớn hơn \(\sqrt{m+n}\)
Cho hai số tự nhiên m và n thỏa mãn \(\frac{m+1}{n}\)+\(\frac{n+1}{m}\)là số nguyên. Chứng minh ước chung lớn nhất của a và b không lớn hơn\(\sqrt{m+n}\)
cho m,n là 2 số tự nhiên; p là số nguyên tố thỏa mãn: \(\frac{p}{m-1}=\frac{m+n}{p}\)chứng minh rằng: p*p= n+2
CMR : nếu các số tự nhiên m và n thỏa mãn hệ thức 3m - 2n = 1 thì m và n nguyên tố cùng nhau
Tìm tất cả các số tự nhiên m ; n thỏa mãn : 2m + 2015 = | n - 2016 | + n - 2016
cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Cho 2 stn m và n
a) Cm trong 4 kết luận sau có 2 kết luận mau thuẫn với nhau:
1. m + 1 chia hết cho n.
2. m= 2n+5.
3. m+n là B(3).
4. m+7n là số nguyên tố.
b) Tìm tất cả các số tự nhiên m và n thỏa mãn 3 điều kiên trên.
Cho m, n là các số tự nhiên và p là số nguyên tố thỏa mãn p phần m-1=m+n phần p .
Tính A= p^2-n ta được A = ......
có bao nhiêu cặp zô tự nhiên (n,m) để thỏa mãn điều kien sau
\(\frac{1}{n}+\frac{1}{m}=\frac{1}{24}\)