Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các số thực dương x,y,z thỏa mãn x^3+y^3+z^3=24.Tìm GTNN cua biểu thức
P=\((xyz+2(x+y+z)^2)/(xy+yz+zx)-8/(xy+yz+zx+1)\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức:
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
xét các số thực x,y,z thỏa mãn \(\sqrt{xy}+\sqrt{yz}\)+\(\sqrt{zx}=1\). tìm gtnn của biểu thức P=\(\frac{x^2}{x+y}\)+\(\frac{y^2}{y+z}\)+\(\frac{z^2}{z+x}\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
cho x, y, z là các số thực dương, tìm GTNN:
\(P=\frac{x^2+y^2+z^2}{xy+2yz+zx}\)
làm ơn có ai giúp mik ko help me!!!!!!!
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<= 3/2
tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)