cho x,y,z thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\xy+yz+xz=1\end{matrix}\right.\)
chứng minh \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
Cho các số x,y,z thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng:
\(\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\le2\)
Cho x,y,z thỏa mãn điều kiện \(0\le x,y,z\le1\). Tìm GTLN của biểu thức \(M=x^{10}+y^6+z^{2016}-xy-yz-xz\)
Cho các số thực dương x,y,z thỏa x2 + y2 + z2 = 3xyz. Chứng minh:
\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)
cho các số thực dương x,y,z thỏa mãn \(x^2+y^2+z^2=3xyz\) chứng minh \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho 3 số thực x, y, z thỏa mãn: \(x+y+z\le\frac{3}{2}\). Tìm Min \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Cho x, y, z là các số dương thỏa mãn điều kiện: xy + yz + xz = xyz
CMR: \(\dfrac{1}{x+4y+9z}\le\dfrac{1}{36}\)
1)Cho các số thực \(x_1,x_2,x_3\)và \(y_1,y_2,y_3\)thỏa mãn \(x_1\le x_2\le x_3,y_1\le y_2\le y_3\).Chứng minh rằng \(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)\le3\left(x_1y_1+x_2y_2+x_3y_3\right)\)
2)Với các số thực x,y,z tùy ý thỏa mãn \(1< x\le y\le z\).Chứng minh rằng:
\(\frac{x^{2017}+y^{2017}+z^{2017}}{x^{2018}+y^{2018}+z^{2018}}\le\frac{3}{x+y+z}\)