\(xy+x-2y=\left(x-2\right)y+x=3\)
Trừ 2 vế đi 1 đơn vị , ta có
\(\left(x-2\right)y+\left(x-2\right)=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
\(\left(x-2\right)\left(y+1\right)\) | \(x-2\) | \(y+1\) | \(x\) | \(y\) |
\(1\) | \(1\) | \(1\) | \(3\) | \(0\) |
\(1\) | \(-1\) | \(-1\) | \(1\) | \(-2\) |