Số cặp số nguyên \(\left(x;y\right)\)thỏa mãn \(2x^2+3y^2+4x=19\)là ?
tìm tất cả cá số nguyên x , y thỏa mãn : 2x2 + 3y2 + 4x = 19
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
tìm các cặp số nguyên (x;y) sao cho 2x2+4x=19-3y2
Tìm các số nguyên x,y biết
\(2x^2+4x=19-3y^2\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
Tìm các cặp số nguyên x;y thỏa mãn:
a) 6x^2+10y^2+2xy-x-28y+18=0
b) 2x^6+y^2-2x^3y=320
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức sau:
(2x - n)(4x2 + 2xy + y2) + (2x + y)(4x2 - 2xy + y2) - 16x(x2 - y) = 32