\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
<=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
<=> 8(20 + xy) = 4x
<=> 2(20 + xy) = x
<=> 40 + 2xy = x
<=> x(1 - 2y) = 40
Lập bảng xét các trường hợp
x | 1 | 40 | 2 | 20 | 5 | 8 | 10 | 4 | -10 | -4 | -5 | -8 | -2 | -20 | -1 | -40 |
1 - 2y | 40 | 1 | 20 | 2 | 8 | 5 | 4 | 10 | -4 | -10 | -8 | -5 | -20 | -2 | -40 | -1 |
y | -39/2 (loại) | 0 | -19/2(loại) | -1/2(loại) | -7/2 (loại) | -2 | -3/2 (loại) | -9/2(loại) | 5/2(loại) | 11/2(loại) | 9/2(loại) | 3 | 21/2(loại) | 3/2(loại) | 41/2(loại) | 1 |
Vậy các cặp (x;y) tìm được là (40;0) ; (8;-2) ; (-8 ; 3) ; (-40 ; 1)