ND

Tim cac so nguyen x y thoa man\(x^3+3x=x^2y+2y+5\) 

GG

\(x^3+3x=x^2y+2y+5\)              \(\left(1\right)\)

\(\Leftrightarrow x^2y+2y=x^3+3x-5\)

\(\Leftrightarrow\left(x^2+2\right)y=x^3+3x-5\)

\(\Leftrightarrow y=\frac{x^3+3x-5}{x^2+2}=\frac{x^3+2x+x-5}{x^2+2}\)

\(=\frac{x\left(x^2+2\right)+\left(x-5\right)}{x^2+2}=\frac{x\left(x^2+2\right)}{x^2+2}+\frac{x-5}{x^2+2}\)

\(=x+\frac{x-5}{x^2+2}\)

Mà \(x,y\in Z\)

\(\Rightarrow\frac{x-5}{x^2+2}\in Z\)

\(\Rightarrow x-5⋮x^2+2\)

\(\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)

\(\Rightarrow x^2-25⋮x^2+2\)

\(\Rightarrow x^2+2-27⋮x^2+2\)

\(\Rightarrow27⋮x^2+2\)

\(\Rightarrow\left(x^2+2\right)\inƯ\left(27\right)\)

Mà \(Ư\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)

Nhưng \(x^2+2\ge2\forall x\)

\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)

Lập bảng giá trị :

\(x^2+2\)\(3\)\(9\)\(27\)
\(x^2\)\(1\)\(7\)\(25\)
\(x\)\(\pm1\)\(\sqrt{7}\)\(\pm5\)

Mà \(x\in Z\)

\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)        \(\left(2\right)\)

Thay \(\left(2\right)\)vào   \(\left(1\right)\)ta có :

+) Với \(x=-1\Rightarrow y=-3\)    ( thõa mãn )

+) Với \(x=1\Rightarrow y=-\frac{1}{3}\)   ( loại )

+) Với \(x=-5\Rightarrow y=-\frac{145}{27}\)   ( loại )

+) Với \(x=5\Rightarrow y=5\)  ( thõa mãn )

Vậy các số nguyên \(\left(x,y\right)\)cần tìm là : \(\left(-1;-3\right)\) ;       \(\left(5;5\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HO
Xem chi tiết
AT
Xem chi tiết
TN
Xem chi tiết
CC
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết