x (y+2) - y = 3
<=>( x-1 )y + 2y - 3 = 0
<=> x = 11 ;x=-2
Ta có: \(x.\left(y+2\right)-y-2=1\) \(\left(x,y\inℤ\right)\)
\(\Leftrightarrow x.\left(y+2\right)-\left(y+2\right)=1\)
\(\Leftrightarrow\left(x-1\right).\left(y+2\right)=1=1.1=\left(-1\right).\left(-1\right)\)
+ \(\hept{\begin{cases}x-1=1\\y+2=1\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=2\left(TM\right)\\y=-1\left(TM\right)\end{cases}}\)
+ \(\hept{\begin{cases}x-1=-1\\y+2=-1\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=0\left(TM\right)\\y=-3\left(TM\right)\end{cases}}\)
Vậy ............
Ta có : \(x\left(y+2\right)-y=3\)
\(\Rightarrow x\left(y+2\right)-\left(y+2\right)+2=3\)
\(\Rightarrow\left(x-1\right)\left(y+2\right)=1\)
Vì \(x,y\inℤ\Rightarrow x-1;y+2\inℤ\)
\(\Rightarrow x-1;y+2\inƯ\left(1\right)=\){\(1;-1\)}
Ta có bảng sau :
\(x-1\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(y\) | \(-1\) | \(-3\) |
Vậy \(\left(x;y\right)\in\){\(\left(2;-1\right);\left(0;-3\right)\)}