Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HM

Tìm các số nguyên x, y thoả mãn đẳng thức 2x2+3y2=77

Help me!!!

DP
29 tháng 4 2017 lúc 20:18

Từ 2x2 + 3y2 =77.Suy ra \(0\le3y^2\le77\Rightarrow0\le y^2\le25\)kết hợp với 2x2 là số chẵn => 3y2 là số lẻ =>y2 là số lẻ => y \(\in\){1 ;9 ; 25} 

+Với y2 = 1 => 2x2 = 77 - 3 = 74 <=> x2 = 37 (không thỏa mãn)

+Với y2 = 9 => 2x2 = 77 - 27 = 50 <=> x2 = 25 <=> x = 5 hoặc x = -5 

+Với y2 = 25 => 2x2 = 77 - 75 = 2 <=> x2 = 1 <=> x = 1 hoặc x = -1 

Vậy ta có các trường hợp sau:

x1-11-15-55-5
y55-5-533-3-3
Bình luận (0)
H24
29 tháng 4 2017 lúc 20:08

ta có: \(2x^2+3y^2=44+33\)

=>\(2x^2+3y^2=2.22+3.11\)

=>\(x^2=22\Rightarrow\sqrt{22}\)

và \(y=11\Rightarrow\sqrt{11}\)

đúng 100%

đúng 100%

đúng 100%

Bình luận (0)
NM
29 tháng 4 2017 lúc 20:20

Ta có \(3y^2< 77\)

=> \(y^2\le25\)

=> \(\left|y\right|\le5\)

Thử \(\left|y\right|\) với 1,2,3,4,5 ; ta thấy chỉ có với \(\left|y\right|=5\) thì x là số nguyên

=> \(\left|x\right|=1\)

Vậy \(x\in\left\{-1;1\right\}\)\(y\in\left\{-5;5\right\}\)

Bình luận (0)
DH
13 tháng 2 2018 lúc 18:24

Do Not Ask Why sai rồi 

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TT
Xem chi tiết
TG
Xem chi tiết
ND
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
CL
Xem chi tiết