FS

Tìm các số nguyên x, y thỏa mãn : 2y2x + x + y + 1 = x2 + 2y2 + xy

NC
24 tháng 3 2019 lúc 11:11

\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)

<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)

<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên

Có 2 TH

+) Trường hợp 1

\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn

+ Trương hợp 2

\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn

VÂỵ ....

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
NN
Xem chi tiết
LP
Xem chi tiết
PQ
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết