WM

tìm các số nguyên x, y sao cho : x^2-xy=6x-5y-8

PH
1 tháng 12 2018 lúc 12:01

\(x^2-xy=6x-5y-8\)

\(\Rightarrow x^2-xy-6x+5y+8=0\)

\(\Rightarrow\left(x^2-xy-x\right)-\left(5x-5y-5\right)+3=0\)

\(\Rightarrow x\left(x-y-1\right)-5\left(x-y-1\right)=-3\)

\(\Rightarrow\left(x-y-5\right)\left(x-1\right)=-3\)

Từ đó bạn tìm ước thì ra kết quả.Chúc bạn học tốt.

Bình luận (0)
DH
1 tháng 12 2018 lúc 12:09

đặt \(x-y=k\)

\(x^2-xy=6x-5y-8\Rightarrow x\left(x-y\right)=x+\left(5x-5y\right)-8\Rightarrow xk=x+5\left(x-y\right)-8\)

\(\Rightarrow xk=x+5k-8\Rightarrow xk=x+5k-5-3\Rightarrow xk-x-5k+5=-3\)

\(\Rightarrow x\left(k-1\right)-5\left(k-1\right)=3\Rightarrow\left(x-5\right)\left(k-1\right)=3\Rightarrow x-5;k-1\inƯ\left(-3\right)=+-1;+-3\)

nếu \(x-5=1\Rightarrow x=6\)thì \(k-1=-3\Rightarrow k=-2\Rightarrow y=x-k=6-\left(-2\right)=8\)

nếu \(x-5=3\Rightarrow x=8\)thì \(k-1=-1\Rightarrow k=0\Rightarrow y=x-k=8-0=8\)

nếu \(x-5=-1\Rightarrow x=4\)thì \(k-1=3\Rightarrow k=4\Rightarrow y=x-k=4-4==0\)

nếu \(x-5=-3\Rightarrow x=2\)thì \(k-1=1\Rightarrow k=2\Rightarrow y=x-k=2-2=0\)

vậy (x;y)=(6;8) (8;8) (4;0) (2;0)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
TH
Xem chi tiết
NS
Xem chi tiết
CK
Xem chi tiết
N5
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
GT
Xem chi tiết