HM

tìm các số nguyên x sao cho x(x-1)(x-7)(x-8) là số chính phương

TL
31 tháng 3 2015 lúc 22:51

A = x(x-1)(x-7)(x-8) = [x.(x- 8)].[(x - 1)(x - 7)] = (x2 - 8x).(x2 - 8x + 7) = (x2 - 8x)2 + 7(x2 - 8x)

Đặt a = x2 - 8x => A = a2 + 7a

để A là số chính phương thì A = b2 (b nguyên)

=> a2 + 7a = b2 => 4a2 + 28a + 49 - 49 - 4b2 = 0 => (2a+ 7)2 - (2b)2 = 49

=> (2a + 7 - 2b).(2a + 7 + 2b) = 49

Vì a, b nguyên nên 2a+ 7 - 2b ; 2a + 7 + 2b thuộc Ư(49) = {49; -49; 1;-1; 7; -7}

trường hợp: 2a + 7 - 2b = 49 và 2a + 7 + 2b = 1 . Cộng vế với vế => 4a + 14 = 50 => a = 9 => b = -12 (nhận)

=> x2 - 8x = 9 =>  x2 - 8x - 9 = 0 => x = -1; 9

tương tự với các trường hợp còn lại....................................

Bình luận (0)

Các câu hỏi tương tự
00
Xem chi tiết
H24
Xem chi tiết
MY
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết