Lời giải:
$pq=2r^2+4\vdots 2$ nên trong 2 số $p,q$ phải có ít nhất 1 số chẵn.
Không mất tổng quát giả sử $p$ chẵn. Do $p$ nguyên tố nên $p=2$
Khi đó:
$2q-2r^2=4$
$q-r^2=2$
$q=r^2+2$
Nếu $r$ chia hết cho $3$ thì $r=3$
$\Rightarrow q=3^2+2=11$ (thỏa mãn)
Nếu $r$ không chia hết cho $3$ thì $r^2$ chia $3$ dư $1$
$\Rightarrow q=r^2+2$ chia hết cho $3$
$\Rightarrow q=3$
$\Rightarrow r=1$ (vô lý- loại)
Vậy $(p,q,r)=(2,11,3), (11,2,3)$