TA

Tìm các số nguyên n sao cho n^2 +5n+9 là bội của n+3

TH
30 tháng 3 2016 lúc 19:24

Vì n2+5n+9 là bội của n+3

\(\Rightarrow\)n2+5n+9 chia hết cho n+3

\(\Rightarrow n\left(n+3\right)-3n+5n+9\) chia hết cho  n+3

\(\Rightarrow n\left(n+3\right)+2n+9\) chia hết cho n+3

\(\Rightarrow n\left(n+3\right)+2\left(n+3\right)-6+9\) chia hết cho n+3

\(\Rightarrow n\left(n+3\right)+2\left(n+3\right)+3\) chia hết cho n+3

Mà \(n\left(n+3\right)+2\left(n+3\right)\) chia hết cho n+3

\(\Rightarrow\)3 chia hết cho n+3

\(\Rightarrow\)n+3 \(\in\) {-3;-1;1;3}

Vì n\(\in\)Z ta có bảng sau:

n+3-3-113

n

0246
Nhận xétChọnChọnChọnChọn

Vậy với n\(\in\){0;2;4;6} thì n2+5n+9 là bội của n+3.

Bình luận (6)
BB
10 tháng 2 2021 lúc 13:48

mik hỏng bít làmleuleugianroibanh

Bình luận (0)