Lời giải:
$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$
$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$
Với $n$ nguyên, để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$
Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:
$n^2+n+1\in\left\{1; 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$