a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
CHO CAC SO DUONG x,y,z THOA MAN :x+y+z=1
tìm giá trị nhỏ nhất
M=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
tìm x,y,z>0 sao cho 3x^2-18y^2+2y^2+3y^2*z^2-18x=27
Tìm tất cả các số nguyên x,y,z thỏa mãn:
\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
Cho x,y,z nguyen duong thoa man x+y-z+1=0
Tim GTLN cua \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
cho ba so thuc khong am x,y,z thoa man x+y+z=3 Tinh GTNN cua A=can(2x^2+3xy+2y^2)+can(2y^2+3yz+2z^2)+can(2z^2+3zx+2x^2)
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
cho x,y,z la cac so duong thoa man \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
CMR:\(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)