TT

Tìm các số nguyên dương a; b thoả mãn a+3 chia hết cho b và b+3 chia hết cho a

AH
6 tháng 1 2024 lúc 23:31

Lời giải:

Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.

Vì $b=at-3< a$

$\Rightarrow a(t-1)< 3$

$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$

Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$

$\Rightarrow t=1$. Khi đó: $b+3=a$

$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$

$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$

Nếu $b=1$ thì $a=4$ (tm)

Nếu $b=2$ thì $a=5$ (tm)

Nếu $b=3$ thì $a=6$ (tm)

Nếu $b=6$ thì $a=9$ (tm)

TH2: $a(t-1)=1\Rightarrow a=t-1=1$

$\Rightarrow a=1; t=2$.

$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)

TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$

$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)

Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$

Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.

Bình luận (0)

Các câu hỏi tương tự
CM
Xem chi tiết
SB
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
ML
Xem chi tiết
NP
Xem chi tiết
HD
Xem chi tiết
MX
Xem chi tiết
ND
Xem chi tiết